Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(3): e0298722, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38512881

RESUMO

The tribological behaviour of articular cartilage plays a key role in joint motion; however, there is a gap in research on the effect of hyperuricemic joint fluid on cartilage friction behaviour in acute gouty arthritis. In this study, we carried out a fixed-load scratch experiment to compare the friction and wear of articular cartilage under the lubrication of gouty arthritis arthritic fluid and normal human arthritic fluid, and the results showed that the cartilage friction coefficient of patients with acute gouty arthritis was significantly larger than that of normal human beings, and that the cartilage friction coefficient decreased with the elevation of normal load and sliding speed, and the change with the sliding speed varied more differently from that of normal human beings, and that the cartilage surface wear was more severe after prolonged friction. The wear and tear of the cartilage surface is more severe after prolonged friction. Patients with gouty arthritis should reduce the sudden speed changes such as fast running and variable speed running to maintain the stability of the cartilage surface friction coefficient.


Assuntos
Artrite Gotosa , Cartilagem Articular , Humanos , Fricção , Estresse Mecânico , Líquido Sinovial , Lubrificação
2.
J Orthop Surg Res ; 18(1): 195, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36915109

RESUMO

INTRODUCTION: Total hip arthroplasty for poliomyelitis sequelae could be a technical challenge due to the higher risk for prosthetic dislocation and degenerative changes in the affected limbs. This study aimed to analyse the mid-term outcomes of primary total hip arthroplasty on the affected hip with standard prosthesis. MATERIALS AND METHODS: From January 2008 to January 2018, 32 patients with poliomyelitis sequelae underwent total hip arthroplasty on the affected hip with standard prosthesis. Clinical and radiographical outcomes, complications, and prosthesis survival rates were evaluated. RESULTS: After a mean follow-up of 7.9 (4.4-13.1) years, the Harris Hip Score, University of California Los Angeles activity level rating, and 12-item Short Form Health Survey Questionnaire scale score significantly improved. The abduction and flexion motions of the hip joint improved dramatically, and the visual analogue scale pain score decreased significantly. The leg length discrepancy was effectively corrected. During the follow-up, one patient experienced prosthetic dislocation, one underwent revision surgery due to acetabular component loosening, two had osteolysis, four had heterotopic ossification, two experienced transient sciatic nerve palsy, and one had intermuscular vein thrombosis. The prosthesis survival rate was 96.9% at 5 years postoperatively. No periprosthetic infection occurred. CONCLUSION: Total hip arthroplasty with standard prosthesis could be an effective treatment for hip arthropathy on the affected hip of patients with poliomyelitis sequelae, resulting in good clinical outcomes and few complications. Constrained liner and dual mobility articulation are not recommended unless the hip muscle strength of the abductor is < III.


Assuntos
Artroplastia de Quadril , Prótese de Quadril , Poliomielite , Humanos , Artroplastia de Quadril/métodos , Seguimentos , Falha de Prótese , Estudos Retrospectivos , Prótese de Quadril/efeitos adversos , Resultado do Tratamento , Desenho de Prótese , Reoperação , Poliomielite/complicações , Poliomielite/cirurgia
3.
J Phys Chem Lett ; 14(13): 3168-3173, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-36961452

RESUMO

Metal hydrides have wide applications in energy science. A large pressure gradient propels the hydrogen atoms out. A piezovoltaic device, a pressure gradient-driven battery, can therefore be realized when the migrations of protons and electrons are separated by different conductors. Here we investigate the piezovoltaic performance of PdHx with various proton conductors as electrolytes and experimentally detect an output current of ≲40 nA and a voltage of ∼0.8 V for a 3 µg sample. We also demonstrate the escape of hydrogen atoms from a palladium lattice under an increasing pressure gradient using X-ray diffraction. The relationship between piezovoltaics (chemical process) and piezoelectricity (physical process) is like that between a chemical battery and a capacitor. Our work demonstrates the piezovoltaic application of metal hydrides and provides a new way to convert mechanical energy into electrical energy.

4.
J Am Chem Soc ; 144(48): 21837-21842, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36399710

RESUMO

2,5-Furandicarboxylic acid (FDCA) is one of the top-12 value-added chemicals from sugar. Besides the wide application in chemical industry, here we found that solid FDCA polymerized to form an atomic-scale ordered sp3-carbon nanothread (CNTh) upon compression. With the help of perfectly aligned π-π stacked molecules and strong intermolecular hydrogen bonds, crystalline poly-FDCA CNTh with uniform syn-configuration was obtained above 11 GPa, with the crystal structure determined by Rietveld refinement of the X-ray diffraction (XRD). The in situ XRD and theoretical simulation results show that the FDCA experienced continuous [4 + 2] Diels-Alder reactions along the stacking direction at the threshold C···C distance of ∼2.8 Å. Benefiting from the abundant carbonyl groups, the poly-FDCA shows a high specific capacity of 375 mAh g-1 as an anode material of a lithium battery with excellent Coulombic efficiency and rate performance. This is the first time a three-dimensional crystalline CNTh is obtained, and we demonstrated it is the hydrogen bonds that lead to the formation of the crystalline material with a unique configuration. It also provides a new method to move biomass compounds toward advanced functional carbon materials.


Assuntos
Diamante
5.
Proc Natl Acad Sci U S A ; 119(17): e2201165119, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35439060

RESUMO

Carbon nanothread (CNTh) is a "one-dimensional diamond polymer" that combines high tensile strength and flexibility, but it severely suffers from intrathread disorder. Here, by modifying the reactivity and the stacking ordering of the aromatic precursor, crystalline C3N3H3 CNTh with perfect hexagonal orientation and stacking was synthesized at 10.2 GPa and 573 K from s-triazine. By Rietveld refinement of X-ray diffraction data, gas chromatography mass spectrometry investigation, and theoretical calculation, we found that synthesized CNTh has a tube (3,0) structure, with the repeating s-triazine residue connected solely by C­N bonds along the thread. A "peri-cage" reaction, the concerted bonding between six C and N atoms, instead of [4 + 2] or [1,4] addition reactions, was concluded for the formation of CNThs, and the critical bonding distance between the nearest intermolecular C and N was ∼2.9 Å. The formation of a "structure-specific" crystalline CNTh with C and N orderly distributed highlighted the importance of reaction selectivity and stacking order of reactant molecules, which have great significance for understanding the polymerization of aromatic molecules under high pressure and developing new crystalline CNThs.

6.
Phys Chem Chem Phys ; 23(35): 19503-19510, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34524305

RESUMO

The pressure-induced phase transition and polymerization of nitrogen-rich molecules are widely focused on due to their extreme importance for the development of green high-energy-density materials. Here, we present a study of the phase-transition behaviour and chemical reaction of 1H-tetrazole up to 100 GPa using in situ Raman, IR, X-ray diffraction, neutron diffraction techniques and theoretical calculations. A phase transition above 2.6 GPa was identified and the high-pressure structure was determined with one molecule in a unit cell instead of two molecules as reported before. The 1H-tetrazole polymerized reversibly below 100 GPa, probably through carbon-nitrogen bonding instead of nitrogen-nitrogen bonding. Our studies update the structure model of the high-pressure phase of 1H-tetrazole, and present the possible intermolecular bonding route for the first time, which gives new insights to understand the phase transition and chemical reaction of nitrogen-rich compounds, and is of benefit for designing new high-energy-density materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...